First passage percolation and competition on graphs

Elisabetta Candellero

Roma Tre University

Giornata INdAM – Roma Tre – May 2022

Elisabetta Candellero (Roma Tre)

What I work on and why

I study the long-time behavior of some processes that spread/develop on graphs that are *structurally* very different from each other.

Why is it interesting?

- Sometimes: possible to witness fundamentally different behavior of the process, according to what properties characterize the graph
- If graphs mimic the structure of social networks... study spread of infections/misinformation (etc) in a society

Why looking only at processes on lattices and Euclidean structures?

Figure: Two-dimensional grid (Euclidean).

Elisabetta Candellero (Roma Tre)

FPP and competition on graphs

INdAM

イロト イヨト イヨト

Different Geometries \Rightarrow Great variety of new (exciting) questions!

Figure: Tessellation of Hyperbolic Plane (Non Euclidean).

Elisabetta Candellero (Roma Tre)

FPP and competition on graphs

INdAM

イロト 不得 トイヨト イヨト 二日

4/43

Start **infection** at a vertex and inductively **infect random neighbors** at constant rate. Is the long-time behavior the same in both settings?

Lattice

< ロ > < 同 > < 三 > < 三 >

5/43

Fundamentally Different Behavior!

Model for competition

We deal with 2 First-passage percolation processes:

FPP₁ and **FPP**_{λ}

spreading on a graph G.

Choose 2 parameters: $\lambda > 0$ and $\mu \in (0, 1)$.

- At the origin o place a **black** particle;
- At every x ∈ V(G) \ {o} place a red particle (call it SEED) with probability μ independently for all vertices.

Model: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

イロト イヨト イヨト

Model: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

11/43

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

INdAM

< ロ > < 同 > < 回 > < 回 > < 回 > <

14/43

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

INdAM

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

16/43

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

18/43

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

INdAM

< ロ > < 同 > < 回 > < 回 > < 回 > <

19/43

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

INdAM

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

INdAM

< ロ > < 同 > < 回 > < 回 > < 回 > <

21/43

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

23/43

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

24 / 43

Dynamics: Example on \mathbb{Z}^2

Elisabetta Candellero (Roma Tre)

INdAM

Dynamics

FPP₁ : starts at o and has passage times $\sim E_{xp}(1)$.

Inductively, place an exponential clock of rate 1 on all edges neighboring the current **black cluster** and look at which one rings first, then "grow" the black cluster in that direction.

In the meanwhile, seeds are inactive (sleeping).

 FPP_{λ} : when a seed is "activated", it starts spreading FPP at rate $\lambda > 0$.

NOTE: Occupied vertices stay so for ever.

Model/Questions

We have these two processes (think of infections) that spread at different rates (**black** at rate 1 and red at rate $\lambda > 0$) and are competing for space.

Some questions about the model:

- **Survival**: When either process occupies an <u>INFINITE CONNECTED</u> region of the graph
- **Coexistence**: When both processes survive simultaneously
- (Monotonicity –if time allows: Probability of FPP₁ surviving is/isn't monotone in μ)

Related works

Model introduced by Sidoravicius and Stauffer (*Invent. Math.*) as First-Passage Percolation in Hostile Environment to understand MDLA on \mathbb{Z}^d , d > 2. (Coupling MDLA with FPPHE)

Theorem [Sidoravicius and Stauffer, 2019] On \mathbb{Z}^d for $d \ge 2$, for all $\lambda \in (0, 1)$ if μ is small enough:

 \mathbb{P}_{μ} [**FPP**₁ survives and **FPP**_{λ} does not] > 0.

Questions

Related works

Figure: FPPHE on \mathbb{Z}^2 with $\lambda = 0.7$ and $\mu = 0.027, 0.029, 0.030$ respectively. Colors \Rightarrow different epochs of the growth of **FPP**₁. The whole white region within the thin boundary is occupied by activated **FPP**_{λ}. (Picture by A.Stauffer)

INdAM

29/43

Related works

[Finn and Stauffer, 22+] Study coexistence of **FPP**₁ and **FPP**_{λ} on \mathbb{Z}^d .

If λ is small enough, then there is a range of values for μ so that both processes can coexist with positive probability!

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Our setting: hyperbolic and non-amenable graphs

Hyperbolic graphs

A graph is δ hyperbolic (for some $\delta \ge 0$) if for any triplet of vertices $\{x, y, z\}$:

Elisabetta Candellero (Roma Tre)	FPP and competition on graphs	INdAM	31 / 43
· · · · · ·			

イロト 不得 トイヨト イヨト 二日

Our setting: hyperbolic and non-amenable graphs

Non-amenable graphs

For all finite sets of vertices A, let

$$\partial A := \{x \in A : \exists y \notin A, \{x, y\} \in E(G)\}.$$

G is non-amenable if there is a constant $\mathbf{c} > 0$ such that

$$\inf_{|A|<\infty}\frac{|\partial A|}{|A|}\geq \mathsf{c}.$$

Elisabetta Candellero (Roma Tre)

INdAM

32 / 43

Questions

Hyperbolic non-amenable graphs: Two Examples

Infinite binary tree

Hyperbolic tessellation

			= 7.00
Elisabetta Candellero (Roma Tre)	FPP and competition on graphs	INdAM	33 / 43

Why do we care about such graphs?

FPP can be seen as a model for **spread of infection**, or the **spread of a false rumor within a network**. Think of the following:

Misinformation (as **FPP**₁) starts from an individual in the network.

When *detected* by the detecting stations (seeds), they try to stop it.

Proven: there are models for real-world networks with intrinsic *hyperbolic* and (local) *non-amenable* properties.

Results on Survival and Coexistence

Theorem [C. and Stauffer, 2021] Let *G* be infinite, hyperbolic, non-amenable, vertex-transitive, bounded degree, then:

(i) For all $\lambda > 0$ and for all μ small enough,

 $\mathbb{P}_{\mu}[\mathsf{FPP}_1 \text{ survives indefinitely}] > 0.$

(ii) For all $\lambda > 0$, for all $\mu \in (0,1)$ we have

 $\mathbb{P}_{\mu}[\mathsf{FPP}_{\lambda} \text{ survives indefinitely}] = 1.$

Corollary [C. and Stauffer, 2021] For G as above, for all λ , all μ small,

 $\mathbb{P}_{\mu}[\mathsf{FPP}_1 \text{ and } \mathsf{FPP}_{\lambda} \text{ coexist}] > 0.$

Reasons

We use 2 facts:

- (A) First-passage percolation **grows linearly in time**, with high probability.
- (B) Gromov's result on δ -hyperbolic graphs: if a path joining two vertices moves away from geodesic \Rightarrow it takes an **exponential** detour.

 $(A) + (B) \Rightarrow$ FPP moving away from geodesics has **exponential** delays

▶ If short of time

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Monotonicity in μ ?

It turns out that (percolation arguments)

(for all λ) if μ very close to $1 \Rightarrow \mathbf{FPP}_1$ a.s. doesn't survive,

whereas in all known cases

at least if μ and λ small enough \Rightarrow **FPP**₁ survives w.p.p.

Moreover, seeds get in the way of \mathbf{FPP}_1 because they can "interrupt" black paths.

Monotonicity in μ ? – Natural conjecture

Thus it is natural to conjecture that for (at least) small λ

 $\mathbb{P}_{\mu}(\mathsf{FPP}_1 \text{ survives})$ is monotone in μ .

イロト イボト イヨト イヨト

3

Monotonicity in μ ? – Natural conjecture

Thus it is natural to conjecture that for (at least) small λ

$\mathbb{P}_{\mu}(\mathsf{FPP}_1 \text{ survives})$ is monotone in μ .

FALSE!

38 / 43

Elisabetta Candellero (Roma Tre)	FPP and competition on graphs	INdAM

Results on Monotonicity

Theorem [C. and Stauffer, 2021+] There is an infinite (hyperbolic and non-amenable) graph *G* s.t. when λ is small enough, we can find two values $0 < \mu_1 < \mu_2 < 1$:

 $\mathbb{P}_{\mu_1}(\mathsf{FPP}_1 \text{ survives}) = 0,$

and

 $\mathbb{P}_{\mu_2}(\mathsf{FPP}_1 \text{ survives}) > 0.$

Elisabetta Candellero (Roma Tre)	FPP and competition on graphs	INdAM 3	9/43
----------------------------------	-------------------------------	---------	------

▲□▶▲□▶▲□▶▲□▶ □ のQで

Results on Monotonicity

Theorem [C. and Stauffer, 2021+] There is an infinite (hyperbolic and non-amenable) graph *G* s.t. when λ is small enough, we can find two values $0 < \mu_1 < \mu_2 < 1$:

 $\mathbb{P}_{\mu_1}(\mathsf{FPP}_1 \text{ survives}) = 0,$

and

 $\mathbb{P}_{\mu_2}(\mathsf{FPP}_1 \text{ survives}) > 0.$

This means that adding seeds might actually help FPP₁!

			= •) ((*
Elisabetta Candellero (Roma Tre)	FPP and competition on graphs	INdAM	39 / 43

Social network

Next step:

Understanding how misinformation spreads in real-world networks

Very ambitious goal though... in fact we're still far off!

イロト イヨト イヨト

3

Social network

Graphs (vaguely) modeling social networks might look like this:

Figure: Random hyperbolic graphs present an intrinsic hyperbolic and non-amenable structure.

Elisabetta Candellero (Roma Tre) FPP and competition on graphs INdAM 41/43

Social network

However, a *real*-world network looks like this (still a log way to go...):

Figure: The internet – Picture by Wikipedia.

Elisabetta Candellero (Roma Tre)

FPP and competition on graphs

INdAM

(日)

Thank you for your attention!

Elisabetta Candellero (Roma Tre) F

INdAM

3 🕨 🖌 3 🕨

< A ▶